Math 254a: First Lecture
نویسنده
چکیده
In this course, we will cover the basics of what is called algebraic number theory. Just as number theory is often described as the study of the integers, algebraic number theory may be loosely described as the study of certain subrings of fields K with [K : Q] < ∞; these rings tend to act as natural generalizations of the integers. However, although algebraic number theory has evolved into a subject in its own right, we begin today by emphasizing that the subject evolved naturally as a systematic way to treat certain classical questions about the integers themselves.
منابع مشابه
Math 254a: Class Field Theory: an Overview
Class field theory relates abelian extensions of a given number field K to certain generalized ideal class groups ofK. The fundamental tool for doing this is Frobenius elements, and the Artin map obtained from them. Recall from lecture 24 that if L/K is an abelian extension (i.e., a Galois extension with abelian Galois group), and p is a prime of OK unramified in OL, then we defined Fr(p) ∈ Gal...
متن کاملLecture Notes 1 for 254a
The aim of this course is to tour the highlights of arithmetic combinatorics the combinatorial estimates relating to the sums, differences, and products of finite sets, or to related objects such as arithmetic progressions. The material here is of course mostly combinatorial, but we will also exploit the Fourier transform at times. We will also discuss the recent applications of this theory to ...
متن کاملMath 254a: Evaluating the L-series
We had fixed the notation ζ f = e 2πi f , and τ (χ) = f k=1 χ(k)ζ k f , if χ has conductor f. We want to show: Theorem 0.1. Let χ be a Dirichlet character of conductor f > 1. Then for χ even, we have L(1, χ) = −
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005